

DEVOIR NUMÉRO 4 VERSION A

ECG2 MATHS APPLIQUÉES

EXERCICE 1

Partie I - Réduction et puissances d'une matrice 3×3 .

Dans cette première partie, on considère les matrices $A = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ et $B = A - \frac{1}{3}I_3$.

- 1. Déterminer le rang de B. En déduire une valeur propre immédiate de B.
- 2. Écrire un programme Python d'en-tête def poly_mat(P,M) : qui prend en argument une liste $P=[a_0, a_1, ..., a_n]$ et une matrice carrée M et renvoie la matrice

$$a_0\mathbf{I} + a_1M + \dots + a_nM^n$$
.

3. On suppose la fonction précédente écrite correctement. À l'aide des instructions ci-dessous et de leur résultat d'exécution présenté ci-après, déterminer un polynôme annulateur de B.

```
import numpy as np

B = np.array([[0,1/3,1/3], [2/3,0,0], [2/3,0,0]])

P = [0,-4,0,9]

print(poly_mat(B,P)
```

```
1 >>>
2 [[0.,0.,0.],
3 [0.,0.,0.],
4 [0.,0.,0.]]
```

Déterminer une matrice diagonale D de première ligne nulle et une matrice inversible P de première ligne $(0 \ 1 \ -1)$ telles que $B = PDP^{-1}$.

- **4.** Montrer que pour tout $j \in \mathbb{N}^*$, $B^j = PD^jP^{-1}$.
- **5.** Expliciter la matrice P^{-1} .
- **6.** Établir que pour tout $k \in \mathbb{N}^*$, on a

$$A^{k} = P\left(\sum_{j=0}^{k} {k \choose j} \left(\frac{1}{3}\right)^{k-j} D^{j}\right) P^{-1}.$$

7. Expliciter, pour tout $k \in \mathbb{N}^*$, la première ligne de A^k .

Date: 11 Janvier 2025 08h30-12h00. http://louismerlin.fr.

Partie II - Une chaîne de Markov à trois états. Une urne contient trois boules numérotées de 1 à 3. Un tirage consiste à extraire au hasard une boule de l'urne puis la remettre dans l'urne pour le tirage suivant. On définit une suite de variables aléatoires $(X_k)_{k\in\mathbb{N}^*}$ de la manière suivante.

- Pour tout entier naturel k non nul, X_k est définie après le k-ième tirage.
- \bullet On procède au premier tirage et X_1 prend la valeur du numéro de la boule obtenue à ce tirage.
- Après le k-ième tirage $(k \in \mathbb{N}^*)$:
 - Soit X_k a pris la valeur 1. Dans ce cas on procède au (k+1)-ième tirage et X_{k+1} prend la valeur du numéro obtenu à ce (k+1)-ième tirage.
 - Soit X_k a pris une valeur j différente de 1. Dans ce cas, on procède aussi au (k+1)-ième tirage et X_{k+1} prend la valeur j si la boule tirée porte le numéro j et la valeur 1 sinon.

On admet que $(X_k)_{k\in\mathbb{N}^*}$ est une chaîne de Markov.

- 8. Reconnaître la loi de X_1 .
- 9. Simulation informatique de l'expérience aléatoire.

Compléter le programme suivant pour qu'il simule une réalisation des de X_k (l'entier k étant laissé au choix de l'utilisateur).

```
import numpy as np
import numpy.random as rd

def simul_X(k):
    x = .....
    for i in range(k-1):
        tirage = rd.randint(1,4)
        if x == 1:
            x = .....
    else:
        if tirage != x:
            x = .....
    return x
```

10. On ajoute les commandes suivantes. Expliquer précisément ce qu'elles font. On joint la figure obtenue après leur exécution. Que peut-on conjecturer?

```
import matplotlib.pyplot as plt

n = 50

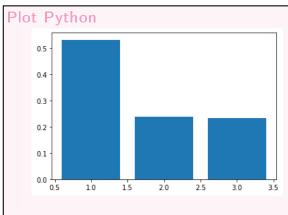
freq_etats = np.zeros(3)

for k in range(1000):
   freq_etats[simul_X(n)-1] += 1

freq_etats = freq_etats/1000

plt.bar([1,2,3],freq_etats)

plt.show()
```



11. On note U_k le vecteur-ligne à 3 colonnes défini par

$$U_k = (\mathbb{P}([X_k = 1]) \quad \mathbb{P}([X_k = 2]) \quad \mathbb{P}([X_k = 3])),$$

c'est-à-dire le k-ième état probabiliste de la chaîne.

a. Pour tout couple $(i,j) \in [1,3]^2$, déterminer les probabilités

$$\mathbb{P}_{[X_k=i]}([X_{k+1}=j]).$$

En déduire que matrice de transition de la chaîne de Markov est la matrice A de la partie I.

- **b.** Représenter le graphe probabiliste à trois sommets associé à la chaîne de Markov $(X_k)_{k\in\mathbb{N}^*}$.
- c. À l'aide de la formule des probabilités totales, justifier que

$$U_{k+1} = U_k A$$
.

- d. Déterminer l'état stable de la chaîne de Markov. Quelle remarque peut-on faire vis-à-vis de la question 10 ?
- e. On pose $U_0 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$. Montrer qu'on a $U_k = U_0 A^k$.
- **f.** Montrer que la loi de X_k est donnée par

$$\mathbb{P}\left([X_k = 1]\right) = \frac{1}{2} \left(1 + \left(-\frac{1}{3}\right)^k\right) \quad \mathbb{P}\left([X_k = 2]\right) = \mathbb{P}\left([X_k = 3]\right) = \frac{1}{4} \left(1 - \left(-\frac{1}{3}\right)^k\right).$$

- g. Justifier que $(X_k)_{k\in\mathbb{N}}$ converge en loi vers une variable aléatoire X dont on donnera la loi. Expliquer en quoi ce résultat est compatible avec la question 11.d.
- h. Calculer l'espérance $\mathbb{E}(X_k)$ de X_k .

EXERCICE 2 EDHEC 2024 Exercice 1.

Dans tout l'exercice, n désigne un entier naturel. On pose $u_n = \int_0^1 \frac{x^n}{4-x^2} dx$ et on a en particulier $u_0 =$

$$\int_0^1 \frac{1}{4 - x^2} dx.$$

1. a. Déterminer les réels a et b tels que, pour tout $x \in [0,1]$,

$$\frac{1}{4-x^2} = \frac{a}{2-x} + \frac{b}{2+x}.$$

- **b.** En déduire que $u_0 = \frac{1}{4} \ln(3)$
- **2.** Calculer u_1 .
- 3. a. Pour tout entier naturel n, exprimer $4u_n u_{n+2}$ explicitement en fonction de n.
 - b. Compléter la fonction Python ci-dessous afin qu'elle renvoie la valeur de u_n à l'appel de suite(n)

```
def suite(n) :
  if (-1)**n == 1 :
    u = np.log(3)/4
        k in range(2, n+1,2):
       np.log(2/np.sqrt(3))
          in range(3, n+1,2):
```

4. a. Utiliser la définition de $(u_n)_{n\in\mathbb{N}}$ pour établir l'encadrement suivant, pour tout $n\in\mathbb{N}$,

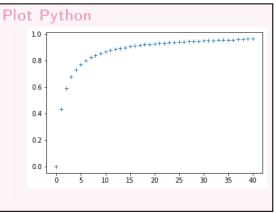
$$\frac{1}{4(n+1)} \leqslant u_n \leqslant \frac{1}{3(n+1)}.$$

- **b.** En déduire la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ ainsi que la valeur de $\lim_{n\to+\infty}u_n$.
- ${\bf c.}$ La série de terme général u_n est-elle convergente ? Pour quelle raison ?

5.

a. On considère le script suivant qui utilise la fonction déclarée plus haut, ainsi que le retour Python 6.

```
x=np.arange(0,41)
for n in range (41):
  u.append(3*n*suite(n))
plt.plot(x,u,'+')
plt.show()
```



Laquelle de ces quatre conjectures suivantes peut-on émettre quant au comportement de la suite $(u_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$?

$$\bullet u_n \underset{n \to +\infty}{\sim} 3n$$

$$\bullet \ u_n \underset{n \to +\infty}{\sim} 3n \qquad \bullet \ \lim_{n \to +\infty} u_n = 1 \qquad \bullet \ u_n \underset{n \to +\infty}{\sim} \frac{1}{3n} \qquad \bullet \ u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

$$\mathbf{0} u_n \sim \frac{1}{3n}$$

$$\bullet u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

b. Établir, grâce à une intégration par parties, l'égalité suivante, pour tout $n \in \mathbb{N}$,

$$u_n = \frac{1}{3(n+1)} - \frac{2}{n+1} \int_0^1 \frac{x^{n+2}}{(4-x^2)^2} dx.$$

 ${f c.}$ Montrer par encadrement que

$$\lim_{n \to +\infty} \int_0^1 \frac{x^{n+2}}{(4-x^2)^2} dx = 0.$$

d. Vérifier la conjecture établie à la question 5.a.

EXERCICE 3 EML 2022 Exercice 2.

On rappelle que $\mathcal{M}_2(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels et que la famille $= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ est une base de $\mathcal{M}_2(\mathbb{R})$.

Pour toute matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$, on appelle **trace** de M le réel noté $\operatorname{tr}(M)$ défini par

$$\operatorname{tr}(M) = a + d.$$

Soit J une matrice non nulle de $\mathcal{M}_2(\mathbb{R})$. On définit alors l'application f de $\mathcal{M}_2(\mathbb{R})$ par

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \quad f(M) = M + \operatorname{tr}(M)J.$$

1. a. Montrer que l'application

$$\operatorname{tr}: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$M \longmapsto \operatorname{tr}(M)$$

est linéaire.

- **b.** Déterminer une base du noyau de tr et vérifier que $\dim(Ker(tr)) = 3$.
- **2.** Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- **3.** Dans cette question **uniquement**, on considère le cas où $J = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$.
 - a. Déterminer la matrice, notée A, de f dans la base \mathcal{B} .
 - **b.** Vérifier que $(A I_4)^2 = 0$ où I_4 désigne la matrice identité de $\mathcal{M}_4(\mathbb{R})$.
 - \mathbf{c} . En déduire les valeurs propres de A. La matrice A est-elle diagonalisable?
 - **d.** Justifier que A est inversible et déterminer A^{-1} .
- 4. On revient au cas général où J désigne une matrice quelconque non nulle de $\mathcal{M}_2(\mathbb{R})$.
 - a. Montrer que 1 est une valeur propre de f et préciser la dimension du sous-espace propre associé.
 - **b.** Justifier que J est un vecteur propre de f et préciser la valeur propre associée.
 - c. (i) On considère dans cette question le cas où $tr(J) \neq 0$. Montrer que f est diagonalisable. Préciser ses valeurs propres et une base de chacun des sous-espaces propres.
 - (ii) On considère dans cette question le cas où $\operatorname{tr}(J)=0$. On suppose qu'il existe une valeur propre λ de f différente de 1 et on note M un vecteur propre associé. Montrer que $\operatorname{tr}(M)=0$. Aboutir à une contradiction.
 - (iii) En déduire une condition nécessaire et suffisante sur tr(J) pour que f soit diagonalisable.
 - d. Déterminer une condition nécessaire et suffisante sur tr(J) pour que f soit bijectif.